
State Machine Mutation-based Testing Framework for Wireless
Communication Protocols

Syed Md Mukit Rashid

The Pennsylvania State University

University Park, PA, United States

szr5848@psu.edu

Tianwei Wu

The Pennsylvania State University

University Park, PA, United States

tvw5452@psu.edu

Kai Tu

The Pennsylvania State University

University Park, PA, United States

kjt5562@psu.edu

Abdullah Al Ishtiaq

The Pennsylvania State University

University Park, PA, United States

abdullah.ishtiaq@psu.edu

Ridwanul Hasan Tanvir

The Pennsylvania State University

University Park, PA, United States

rpt5409@psu.edu

Yilu Dong

The Pennsylvania State University

University Park, PA, United States

yiludong@psu.edu

Omar Chowdhury

Stony Brook University

Stony Brook, NY, United States

omar@cs.stonybrook.edu

Syed Rafiul Hussain

The Pennsylvania State University

University Park, PA, United States

hussain1@psu.edu

ABSTRACT

This paper proposes Proteus, a protocol state machine, property-

guided, and budget-aware automated testing approach for discov-

ering logical vulnerabilities in wireless protocol implementations.

Proteus maintains its budget awareness by generating test cases

(i.e., each being a sequence of protocol messages) that are not only

meaningful (i.e., the test case mostly follows the desirable protocol

flow except for some controlled deviations) but also have a high

probability of violating the desirable properties. To demonstrate

its effectiveness, we evaluated Proteus in two different protocol

implementations, namely 4G LTE and BLE, across 23 consumer de-

vices (11 for 4G LTE and 12 for BLE). Proteus discovered 25 unique

issues, including 112 instances. Affected vendors have positively

acknowledged 14 vulnerabilities through 5 CVEs.

CCS CONCEPTS

• Security and privacy→Mobile and wireless security.

KEYWORDS

Property Guided Testing, Finite State Machine, 4G LTE, Bluetooth

ACM Reference Format:

Syed Md Mukit Rashid, Tianwei Wu, Kai Tu, Abdullah Al Ishtiaq, Rid-

wanul Hasan Tanvir, Yilu Dong, Omar Chowdhury, and Syed Rafiul Hus-

sain. 2024. State Machine Mutation-based Testing Framework for Wire-

less Communication Protocols. In Proceedings of the 2024 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’24), October
14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA, 16 pages.

https://doi.org/10.1145/3658644.3690312

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0636-3/24/10

https://doi.org/10.1145/3658644.3690312

1 INTRODUCTION

Due to the pervasiveness and broadcast-based over-the-air (OTA)

communication, wireless protocols (e.g., BLE, LTE, Wi-Fi) are at-

tractive targets for attackers, especially because vulnerabilities in

them can be used as a stepping stone by adversaries to launch at-

tacks against applications relying on them. Software testing has

proven to be the most effective and dominant approach for ensuring

the correctness of wireless protocol implementation by uncovering

bugs in the pre-deployment stages. This paper focuses on designing,

developing and evaluating an automated testing approach called

Proteus for uncovering logical/semantic vulnerabilities in wireless

protocol implementations [? ? ? ? ? ? ?]. The class of logical bugs

we focus on is only those that induce the implementation to deviate

from the intended design without necessarily causing a crash. Such

logical bugs are not only challenging to discover but also often

have severe security and privacy implications (e.g., authentication

bypass) and go undiscovered during pre-deployment stage testing.

These classes of bugs are the focus of this paper.

Any testing approaches focusing on discovering such logical

bugs in commercial-off-the-shelf (COTS) wireless protocol imple-

mentations must be aware of the following salient aspects. ① COTS

implementations are typically closed-source and expose only their

input-output interfaces, making them only amenable to black-box

testing. ② Wireless protocols are often stateful. Consequently, trig-

gering a vulnerability amounts to injecting the right protocol packet

type and payload only when the protocol is in a specific internal

protocol state. In addition, driving the implementation to the bug-

triggering state may require a long sequence of protocol packets. ③

When executing a test case, the target device’s protocol under test

has to be in the initial state. After running each test case, the device

thus has to be reset. This results in a very high and fixed amortized

cost of running a single test case over-the-air (e.g., ∼1.5 minute for

BLE), limiting the number of test cases executable within a given

time budget. Given a fixed testing budget, it is therefore crucial

that the test cases used are not wasted and indeed meaningful,

that is, they have a high probability of exercising the bug-inducing

behavior in the implementations.

https://doi.org/10.1145/3658644.3690312
https://doi.org/10.1145/3658644.3690312

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Syed Md Mukit Rashid et al.

Existing research efforts that specialize in black-box testing of

wireless communication protocol implementations can be catego-

rized into the following high-level categories: (A) Manual analysis
or fixed test case-based approaches [? ? ? ?]; (B) Reverse engineering-
based approaches [? ? ? ? ? ?]; (C) State machine learning-based
approaches [? ? ? ? ?]. Approaches in categories (A) and (B) are

either unscalable due to manual effort or ineffective in identifying

intricate bugs in complex and stateful protocols that require long

execution packet traces to be exercised. Category (C) approaches

can address both aspects ① and ②, but fail to address ③. Among the

category (C) approaches the ones that rely on automata learning [?

?] need to run a large number of over-the-air (OTA) queries to

obtain the protocol state machine before testing can commence,

hence their testing-budget agnosticism.

Furthermore, many of the above approaches rely on differential
testing, in which diverse implementations-under-test (IUT) are used

as cross-checking test oracles to find logical vulnerabilities. How-

ever, these oracles are inherently unfaithful as test oracles because

they all can suffer from the same logical vulnerability. Finally, most

fuzzing techniques [? ? ?] only implicitly consider a testing budget.

They aim to effectively use the given testing budget in terms of the

number of vulnerabilities discovered by attempting to minimize

the execution time of each test case while also taking guidance

from some rich forms of coverage information (e.g., code coverage).

However, in a testing setup like ours, where the cost of running

each test case cannot be substantially minimized and the availabil-

ity of coverage information is limited, the existing philosophy of

decreasing the execution time of each test case cannot be effectively

adopted. In summary, none of the current approaches suit our testing
setup and thus warrant a new testing philosophy.

Weaddress the above limitations by designing an adaptive testing-

budget-aware, stateful, black box testing approach called Proteus
for COTSwireless protocol implementations. Concretely, Proteus’s
testing philosophy takes advantage of the following three obser-

vations. ❶ Since COTS devices generally pass through a quality

assurance stage where they are tested for conformance and in-

teroperability, undiscovered bugs are more likely to occur when

implementations subtly deviate from rare but good protocol flows.

As such, a test case is meaningful if it mostly adheres to a desired

protocol message sequence (e.g., sending protocol messages only

after the initial connection request message), except for some con-

trolled perturbations. ❷ Any testing-budget-aware approach will

be effective only if it reduces test case wastage by generating only
meaningful test cases that have a high probability of triggering

logical vulnerabilities within the given budget. ❸ The number of

possible meaningful test cases depends on the amount of perturba-

tion and the maximum length we allow. We can adapt an approach

to maximize vulnerability discovery within a given testing budget

if they can be explicitly controlled.

Proteus takes three inputs for generating test cases, namely,

a guiding protocol state machine M, a set of desirable security

and privacy properties Φ expressed in past-time linear temporal

logic formulae, and a testing budget 𝛽 . Proteus relies onM, either

derived from the standard [? ?] or extracted from an implemen-

tation [? ?], to ensure that the generated test cases are indeed

meaningful. Proteus generates test cases through controlled per-

turbation overM, thus mostly capturing good protocol behavior

(realization of observation ❶). Similarly, any property 𝜑 of the pro-

tocol under test guides Proteus to only generate test cases likely to

trigger violation of 𝜑 (realization of observation ❷). The set of prop-

erties Φ serves not only as a faithful test oracle but also liberates

Proteus from needing to have access to diverse implementations

of the same protocol to test a single protocol implementation. Fur-

thermore, the number of test cases to be generated by Proteus is

explicitly controlled by the testing budget parameter 𝛽 . It achieves

budget-awareness by controlling the maximum size of a test case

(i.e., the length of the message sequence) and the number of per-

turbations to be applied in a good protocol flow for generating test

cases (realization of observation ❸). In addition, as discussed in

❶, the number of mutations one needs to consider (given by 𝛽)

need not be large. This observation is corroborated by our findings,

where most vulnerabilities are discovered by considering only 2

mutations ofM.

Conceptually, Proteus’ design is inspired by mutation-based

testing, where the guiding protocol state machine M is mutated to

obtain another state machineM∗
such thatM∗

violates 𝜑 . If the

implementation under test is equivalent to M∗
, we can automati-

cally obtain the vulnerability’s root cause by tracking the mutation

applied to M for obtaining M∗
. Proteus realizes this conceptual

design through a novel three-stage approach. First, Proteus uses a

novel algorithm to automatically synthesize test case templates that

are guaranteed to violate 𝜑 . Second, Proteus instantiates these

test case templates using a dynamic programming algorithm for

the given M, 𝜑 and 𝛽 (i.e., the maximum length of the message

sequence and the number of allowed mutations fromM). Finally,

Proteus efficiently schedules, concretizes, and executes the instan-

tiated test cases OTA. Proteus analyzes the output generated by

the implementation to discover logical vulnerabilities.

To demonstrate the efficacy of Proteus, we have tested several

protocol implementations of two popular wireless communication

protocols: 4G LTE cellular network and Bluetooth Low Energy

(BLE). For 4G LTE, we have tested 11 devices and identified 10

issues, including 3 new ones. For BLE, we have tested 12 devices

and identified 15 issues, including 7 new ones.

In summary, this paper makes the following contributions.

• We developed Proteus, which is an efficient, a black box, proto-

col state machine and property-guided, budget-aware automated

testing approach for discovering logical vulnerabilities in wire-

less protocol implementations.

• We developed two novel algorithms that cooperatively generate

meaningful test case templates that are likely to violate a given

set of security properties under the guidance of a state machine.

• We developed an effective dispatcher that efficiently schedules

test cases for maximizing the number of property violations

within the allocated testing budget, issues OTA test cases to the

devices and analyzes the output to find logical vulnerabilities.

• We evaluated Proteus on LTE and BLE to determine its efficacy.

It identified 3 new issues in 11 LTE implementations and 7 new

issues testing on 12 BLE implementations.

Responsible disclosure. We have responsibly reported all of our

new findings to the affected vendors. For BLE, the vendors ac-

knowledged 11 issues and assigned 3 CVEs; for LTE, the vendors

acknowledged 3 issues with 2 CVEs. The source code of Proteus
is available at [?].

State Machine Mutation-based Testing Framework for Wireless Communication Protocols CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

2 PRELIMINARIES AND NOTATIONS

Protocol statemachine (PSM).A protocol model or state machine

(PSM) M is a tuple ⟨Q, Σ,Λ, 𝑞𝑖𝑛𝑖𝑡 ,R⟩, in which Q is a non-empty

set of states, Σ is the non-empty finite set of input symbols, Λ is

the non-empty finite set of output symbols, 𝑞𝑖𝑛𝑖𝑡 ⊆ Q is the initial

state, and R is the transition relation R ⊆ 𝑄 × Σ × Λ × 𝑄 . Given

a transition ⟨𝑞1, 𝛼,𝛾, 𝑞2⟩ ∈ R, it signifies that if the protocol is in
state 𝑞1 ∈ Q and receives the input symbol 𝛼 , then it will transition

to state 𝑞2 and will generate the output symbol 𝛾 . We consider this

reception of input 𝛼 and generation of output 𝛾 as the observation
of the transition from 𝑞1 to 𝑞2.

The input and output alphabets Σ and Λ in our description are

intentionally left to be abstract. In our context, Σ can be viewed

as the cross-product of all the input message types and predicates

over the input message fields. Similarly, Λ can be defined as the

cross-product of all the output message types and predicates over

them. For example, the input symbol security_mode_command: integrity

== 1 & EIA == 1 & security_header == 3 denotes the security_mode_command

message, with the predicate integrity == 0 denoting the message is

not integrity protected, security_header == 3 denoting the security

header field value of the message is set to 3, and EIA == 1 denoting

the EIA algorithm field is set to 1.

Trace.A trace 𝜋 is a sequence of the form [𝛼1/𝛾1, 𝛼2/𝛾2, . . . , 𝛼𝑘/𝛾𝑘]
where𝛼𝑖 ∈ Σ and𝛾𝑖 ∈ Λ. In our context, 𝜋 signifies a protocol execu-

tion in which the protocol implementation is fed the input symbols

[𝛼1, 𝛼2, . . . , 𝛼𝑘], and it generates the output symbols [𝛾1, 𝛾2, . . . , 𝛾𝑘].
For instance, consider the trace 𝜋∗ in BLE [scan_req/ scan_resp, con_req/

null_action, version_req: ext_ll==0/ version_resp, pair_req: sc==1/ pair_resp,

key_exchange / key_ response]. In 𝜋∗, scan_req has been first sent to

the IUT that responds with scan_resp. Then, connection_ reqest is

sent, to which the response is null_action (i.e., the IUT does not

generate an output). After that, the response to version_reqest:ext_ll

== 0 is version_reqest:ext_ll == 0, and so on. The length of trace 𝜋

is denoted by |𝜋 |. The 𝑖th element of 𝜋 is denoted with 𝜋𝑖 (where

0 ≤ 𝑖 < |𝜋 |). “·” represents the concatenation of two traces. As an

example, [𝛼/𝛾] · 𝜋1 denotes a trace obtained by prepending the

trace with a single observation 𝛼/𝛾 to trace 𝜋1.

3 MOTIVATION OF PROTEUS

We first review the unique challenges of testing COTS wireless pro-

tocol implementations and then use a running example to motivate

Proteus’s design choices.

Closed-source implementations. As COTS wireless devices tend

to be closed-source, any testing approach relying on some level of

access to the source code (white box or gray box) is inapplicable,

warranting a black box testing approach which Proteus follows.

Need for a faithful test oracle. Crashing behavior can serve as

a protocol-agnostic universal symptom for memory-related bugs.

In contrast, semantic or logical bugs require a faithful test oracle

to accurately adjudicate the correct behavior for a given test case.

Proteus uses a set of security properties collected from RFCs/spec-

ifications as faithful oracles. If a property is violated, Proteus
directly concludes that it is a logical vulnerability.

Protocol statefulness. Statefulness of wireless protocols intro-

duces the following challenges: (1) Analysis mechanisms must be

aware of the underlying protocol state. (2) The protocol behavior

q0 q1 q2 q3 q4 q5
𝑎𝑒𝑎 𝑎𝑎𝑟

𝑎𝑎𝑝

𝑎𝑠𝑚 𝑎𝑟𝑠

𝑎𝑖𝑑

𝑎𝑑𝑟

𝑎𝑠𝑚

𝑎𝑔𝑐

𝑎𝑠𝑟 ′

𝑎𝑔𝑟 ′

𝑎𝑎𝑐

Figure 1: A partial LTEprotocol statemachine used as guiding

PSM for running example. The transition labels are presented

in Table 1, with red transitions indicating mutations.

depends on both the current state and the current protocol packet.

(3) Triggering a bug may require driving the target protocol imple-

mentation in a particular protocol state. This may require sending a

long sequence of messages to the IUT (to reach the bug-triggering

state) before we can inject the bug-triggering packet. (4) Due to

2 and 3, the universe of test cases is potentially infinite. A naive

sampling of this infinite test case universe is unlikely to be effective

for a given testing budget. Proteus, therefore, uses guidance from
both the PSM and properties to efficiently sample meaningful test

cases that will likely trigger a vulnerability.

High cost of running a test case. Because of protocol statefulness,

any previous test case may drive the protocol to an unknown state

for which the test oracle does not know the correct behavior. If a

protocol does not have a known homing sequence [?], one has to
reset the device’s state machine either using a sequence of OTA

messages or reboot the device. Also, after sending each protocol

message in a test case, the tester has to wait a certain time to check

whether the message induces a device crash. The resets and device

responsiveness checks substantially increase the amortized cost

of executing a single test case. As an example, it takes up to ∼1.5
minutes in BLE and ∼1 minute in LTE to run a test case containing

∼6−8 messages. The high execution cost significantly slows the

overall testing speed and allows testing only a limited number of test

cases within a given time budget. Failing to explore more protocol

behavior within a specific time results in fewer bug detections.

Testing budget awareness. Traditional fuzzing approaches for

general-purpose systems implicitly consider a testing budget. They
try to accelerate the discovery of security vulnerabilities through

different mechanisms such as enhancing code coverage [? ? ?],

optimizing the search space of test messages [?], adopting effi-

cient scheduling mechanisms [?], increasing testing speed [?],

or improving discovery of execution paths [?]. However, these

approaches have no explicit mechanism to adapt their test case

generation according to the available testing budget. In contrast,

Proteus explicitly respects the testing budget. It leverages a guid-

ing PSM and input properties and explicitly controls the mutation

amount and length of the test cases to generate meaningful test

cases that can be executed within the available time budget.

3.1 Running Example

To justify the approach taken by Proteus, we consider a running
example using 4G LTE.

Guiding PSM. The partial PSM used in this example, as shown in

Figure 1, is extracted from the LTE NAS layer protocol specification.

Table 1 explains the transition labels of the guiding PSM. Some

errors are introduced intentionally (red transitions) in guiding PSM.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Syed Md Mukit Rashid et al.

Table 1: Transition labels (i.e., input and output symbols) in

the guiding PSM.

Symbol Description

𝑎𝑒𝑎 enable_s1 / attach_reqest

𝑎𝑎𝑟 authentication_reqest / authentication_response

𝑎𝑠𝑚 security_mode_command / security_mode_complete

𝑎𝑖𝑑 identity_reqest: integrity == 1 & identity_type == 1/ iden-

tity_response

𝑎𝑑𝑟 detach_reqest / detach_accept

𝑎𝑟𝑠 rrc_security_mode_command / rrc_security_mode_complete

𝑎𝑎𝑐 attach_accept / attach_complete

𝑎𝑔𝑐 guti_reallocation_command / guti_reallocation_complete

𝑎𝑔𝑟 ′ guti_reallocation_command: replay == 1 / guti_reallocation_complete

𝑎𝑠𝑟 ′ security_mode_command: replay == 1 / security_mode_complete

𝑎𝑎𝑝 attach_accept: integrity == 0 & cipher == 0 & security_ header _type

== 0/ null_action

𝑎𝑎𝑝′ attach_accept: integrity == 0 & cipher == 0 & security_ header _type

== 4/ attach_complete

Table 2: Sequences (test traces) considered for the running

example in Figure 1.

ID Sequence

S0 𝑎𝑒𝑎, 𝑎𝑎𝑟 , 𝑎𝑠𝑚, 𝑎𝑖𝑑
S1 𝑎𝑒𝑎, 𝑎𝑎𝑟 , 𝑎𝑠𝑚,𝑎𝑖𝑑 ′𝑎𝑖𝑑 ′𝑎𝑖𝑑 ′

S2 𝑎𝑒𝑎, 𝑎𝑎𝑟 , 𝑎𝑠𝑚,𝑎𝑑𝑟𝑎𝑑𝑟𝑎𝑑𝑟 , 𝑎𝑎𝑐 , 𝑎𝑔𝑐 , 𝑎𝑔𝑟 ′

S3 𝑎𝑒𝑎, 𝑎𝑎𝑟 , 𝑎𝑠𝑚, 𝑎𝑟𝑠 , 𝑎𝑎𝑐 , 𝑎𝑔𝑐 ,𝑎𝑠𝑟 ′𝑎𝑠𝑟 ′𝑎𝑠𝑟 ′ ,𝑎𝑔𝑟 ′𝑎𝑔𝑟 ′𝑎𝑔𝑟 ′

Desirable property. The security property of interest in this ex-

ample is the following. 𝜙𝑔 : “After successfully completing the at-
tach procedure, a replayed GUTI Reallocation Command message
should not be accepted.” This property prevents an attacker from per-

forming linkability attacks by violating the freshness of a device’s

ephemeral identity (i.e., GUTI). Violating this property enables an

adversary to launch an attack in which they send a previously cap-

tured guti_reallocation_command message intended for the victim to

all devices in a cell. If the victim device violates the above property

and is present in that cell, it will respond positively, whereas others

will just respond with a rejection. In this way, the adversary can

test the presence of a victim in a cell.

3.2 Benefit of Having PSM and Properties

Before explaining the advantage of having access to both a guiding

PSM and desirable security properties for generating meaningful

test cases within a testing budget, we first explainwhy any approach

having access to just one of these is unlikely to be as effective.

Why is guiding PSM not enough? Consider a PSM-guided test-

ing approach that mutates a trace adhering to the protocol flow to

generate a test case. However, this approach does not guarantee

that the mutated test case will violate 𝜙𝑔; wasting a test case. As

an example, consider a good protocol flow sampled from the PSM

denoted as S0 in Table 2. Suppose we mutate S0 by adding a muta-

tion on the identity_reqest message to generate the test case S1 in

Table 2. S1 clearly does not violate the property as it does not even

include the guti_reallocation_command message, let alone its replay.

Why are properties not enough? Access to properties, however,

ensures that such blatantly vacuous test cases like S1 are not gener-

ated. Considering the property 𝜙𝑔 , one can automatically generate

test skeletons that are guaranteed to violate it. One such test skeleton
or template (expressed as a regular expression for ease of exposi-

tion) is 𝜎𝑔 = (.)∗a𝑎𝑟 (.)∗a𝑠𝑚 (.)∗a𝑎𝑐 (.)∗a𝑔𝑐 (.)∗a𝑔𝑟 ′ where wildcard

Deviation
w.r.t Guiding PSM

Unresponsive

Specifications

TraceDispatcherGuiding PSM

Property Violation

RegexGenerator

Security
Properties

Trace
Skeletons

TraceBuilder

Test
Traces

Scheduler Adapter
OTA

Testing

Observer

Feedback
Selected

Trace

Figure 2: Overview of Proteus.

characters signify that they can be replaced with 0 or more occur-

rences of any input symbols, and still result in a 𝜙𝑔-violating test.

𝜎𝑔 captures the necessary messages to violate 𝜙𝑔 , with wildcard

characters allowing other protocol messages. Suppose we instan-

tiate 𝜎𝑔 by replacing wildcard characters with arbitrary concrete

symbols. Without any knowledge of a typical good protocol flow,

we may obtain instantiated test case S2 (see Table 2) which violates

𝜙𝑔 . However, any practical protocol implementation would most

likely reject this trace since 𝑎𝑑𝑟 will discard the NAS security con-

text and the subsequent messages of S2 will be dropped. Also, a

successful RRC security context 𝑎𝑟𝑠 is not performed, preventing

the completion of the attach procedure. Such blind instantiations

of wildcard characters to generate a test case will likely result in

meaningless test cases that the IUT will reject, wasting test cases.

Advantage of Proteus’ approach. Proteus takes advantage of

the strengths of both PSM-guided and property-guided approaches.

The main insight Proteus uses is that after a trace skeleton like

𝜎𝑔 is created, it does not blindly instantiate the wildcard characters

and instead relies on the PSM for guidance on instantiating these

free choices. When instantiating these open choices, it does not

necessarily follow the PSM exactly but also includes controlled

deviations. For example, using the PSM, Proteus would instantiate

𝜎𝑔 and generate a test case S3, which not only violates 𝜙𝑔 but also

have a higher chance of being accepted by a buggy implementation

as it closely follows a good protocol flow.

4 DESIGN OVERVIEW AND CHALLENGES

4.1 Proteus Overview

Given a set of desired properties Φ = {𝜙1, 𝜙2, . . . , 𝜙𝑛}, a (potentially,
standard-prescribed) guiding PSM M of a protocol 𝑃 , a testing

budget 𝛽 , and an implementationI𝑃 of the protocol 𝑃 under test (i.e.,

IUT), Proteus aims to identify execution traces 𝜋𝑐 of I𝑃 such that

it falsifies one or more desired properties 𝜙𝑖 ∈ Φ while receiving

guidance from M and Φ in time proportional to 𝛽 . 𝛽 is of the

form ⟨𝜆, 𝜇⟩ in which 𝜆 denotes the maximum length budget (i.e.,
the number of input symbols in a test case) and 𝜇 represents the

mutation budget (i.e., the maximum number of places a test case

can deviate from a good protocol flow). Figure 2 presents the high-

level overview of Proteus. The full pseudocode of Proteus’s test
generation is presented in Algorithm 1 in Appendix. Conceptually,

for each property 𝜙𝑖 ∈ Φ, Proteus carries out the following steps.

(1) Test skeleton generation. Proteus uses itsRegExGenerator
to generate a test skeleton denoted as a regular expression (RE) for

𝜙𝑖 . This test skeleton is an abstract execution/trace 𝜋𝑎 of the proto-

col under test guaranteed to violate 𝜙𝑖 . Some positions of 𝜋𝑎 have

specific input symbols, whereas others have wildcard characters.

State Machine Mutation-based Testing Framework for Wireless Communication Protocols CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

One can instantiate wildcards with input symbols and still violate

𝜙𝑖 . Based on 𝛽 , Proteus will generate multiple such test skeletons.

(2) Instantiating test skeletons. In this step, Proteus instan-

tiates the abstract trace 𝜋𝑎 , especially in unrestricted positions

(represented with wildcard characters) with specific input symbols

under the guidance ofM while respecting the budget 𝛽 . Based on 𝛽 ,

Proteus will generate multiple instantiated test cases 𝜋𝑐 , contain-

ing input symbols in all positions with no wildcard characters, and

store them in TestTraceSet. Guidance fromM is crucial to ensure

that any generated instantiated trace is indeed meaningful.

(3) Dispatching test cases. Proteus then takes each instanti-

ated 𝜋𝑐 , schedules it, and then prepares OTA protocol packets for

each input symbol. It then sends the resulting concrete protocol

packets contained in this concretized test case OTA to I𝑃 .
(4) Vulnerability detection and reporting. If I𝑃 accepts the

concretized test case executed OTA, then it signifies a vulnerability.

In such a case, the test case is stored, and a vulnerability is reported.

4.2 Challenges and Insights

Realizing Proteus’ approach requires tackling the following chal-

lenges. We address the challenges with the outlined novel insights.

❏ Challenge C1: Synthesizing test skeletons from proper-

ties. Proteus takes the desired properties as past linear temporal

logic (PLTL) formulae. We, therefore, first require to generate test

skeletons that are guaranteed to violate a property. Also, we need

a succinct representation for test skeletons.

Insight I1. We use regular expressions (REs) as our succinct in-

termediate representation of a property-violating test skeleton. RE

is not only expressive enough to capture the temporal ordering in

a PLTL formula but also can represent logical dependencies. This

leads to the following research question: how does one generate 𝜋𝑎

in regular expression format from a PLTL formula automatically?
To answer this, we observe that a PLTL expression contains

logical (e.g., AND operator) and temporal (e.g., SINCE operator) op-

erators. Logical operators of the PLTL formula express constraints

over its operands for any 𝜋𝑎 expressing the violation of the PLTL

expression 𝜙 . In contrast, temporal operators express constraints

over their operands in a range of positions in 𝜋𝑎 . An abstract syntax

tree (AST) effectively expresses the relation between an operator

and its operands, and its leaves are propositions required to obtain

the input symbol or wildcard characters in 𝜋𝑎 . Proteus parses

the AST of the PLTL formula and leverages the PLTL operator

semantics to non-deterministically generate a trace skeleton 𝜋𝑎 .

❏ Challenge C2: Instantiating abstract test skeletons using

guiding PSM. The next challenge is to instantiate the abstract test

skeleton 𝜋𝑎 to a test case 𝜋𝑐 while taking guidance from the PSM.

We assume that the guiding PSM satisfies all security properties.

In contrast, property-violating traces will likely be present when

implementations subtly deviate from the standard. As such, we opt

to perform mutations on the guiding PSM and generate traces to

instantiate the abstract test skeleton.

However, if we perform too many mutations on the guiding PSM

M, we will generate traces that substantially deviate from the stan-

dard, which are unlikely to trigger any vulnerabilities. In contrast,

if we perform too few mutations, we may miss some vulnerabilities

that require more mutations to identify (e.g., generating a test trace

that detects the GUTI reallocation replay attack in LTE requires

two mutations). Thus, we need to vary the amount of mutation 𝜇

within a range of values.

Similarly, generating arbitrarily long traces negatively impacts

testing. Long traces likely repeat the same states and transitions,

making it unlikely to uncover new vulnerabilities. Even worse,

excessively long traces takes significantly more time to test OTA,

ultimately wasting our testing budget. In contrast, we need our test

traces to be at least as long as the number of literals in the trace

skeleton 𝜋𝑎 to generate a trace that satisfies 𝜋𝑎 . We also require

a slightly longer trace to visit extra states and uncover potential

property violations. Thus, similar to mutations, we need to vary

the length of the generated traces 𝜆 within a range of values.

Finally, for a given test skeleton 𝜋𝑎 , the challenge is to design an

automatic approach to generate instantiated traces 𝜋𝑐 that would

(1) satisfy the abstract test skeleton 𝜋𝑎 , (2) align with the guiding

PSM I𝑃 , (3) ensure that each generated instantiated trace 𝜋𝑐 require
at most 𝜇 mutations onM, and (4) maintain a maximum length of 𝜆.

For example, consider the guiding PSM in Figure 1 and the property

𝜙𝑔 provided in Section 3. A trace skeleton that violates 𝜙𝑔 is 𝜎𝑔 ,

and S3 (shown in Table 2) is a test trace that satisfies 𝜎𝑔 . S3 aligns

withM within 2 mutations (i.e., it would satisfy any requirement

of 𝜇 >= 2). The mutations are marked bold in Table 2. Also, S3 is

of length 8 and thus satisfies any length requirement of 𝜆 >= 8.

Insight I2.We observe that we can solve the problem of generating

test cases described above by combining overlapping subproblems
originating from destination states 𝑞𝑛 (𝑞𝑛 ∈ M) of the outgoing

transitions of a particular state 𝑞𝑐 . The solution of the subprob-

lems will produce traces by using mutations wherever necessary

to satisfy some suffix of 𝜋𝑎 starting from state 𝑞𝑛 . By prepending

an observation (depending on 𝜋𝑎) to these traces, we can gener-

ate traces originating from 𝑞𝑐 that satisfy 𝜋𝑎 within the specified

mutation and length budget. For example, in Figure 1 if we have

that trace 𝜋𝑘 = 𝑎𝑎𝑟𝑎𝑠𝑚𝑎𝑠𝑚𝑎𝑟𝑠𝑎𝑎𝑐𝑎𝑔𝑐𝑎𝑠𝑚′𝑎𝑔𝑟 ′ that satisfies 𝜎𝑔 from

state 𝑞1, and append observation 𝑎𝑒𝑎 (obtained from the transition

from 𝑞0 to 𝑞1) to this trace, we will obtain trace S3 shown in Table

2. S3 satisfies 𝜎𝑔 from 𝑞0 and requires the same amount of mutation

but has one length more than 𝜋𝑘 . Also, consider two subproblems

involving two transitions with the same observation and destina-

tion state but different source states. We want to satisfy the same

trace skeleton with the same budget. Then, any trace obtained from

the first subproblem will also be a solution for the second sub-

problem. Thus, the subproblems exhibit overlapping characteristics

and Proteus adopts a dynamic programming-based solution to

generate test cases.

❏ Challenge C3: Arbitrary mutations miss logical vulnerabil-

ities. As discussed in challenge C2, one must perform mutations

on the PSM to increase the chance of triggering security property

violations. To mutate a PSM, we must select a transition and alter

it, i.e., its input, output, or destination state. At any protocol state,

randomly selecting a transition to mutate is less likely to violate

the given property since it would not be property-driven. Similarly,

even after selecting a transition to mutate, randomly altering the

input message or output message of the transition at the bit/byte

level, like traditional fuzzers [? ?], would also be inefficient since it

does not consider the semantic meaning of the message fields (i.e.,

byte offset and boundary of each message field), the given security

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Syed Md Mukit Rashid et al.

Table 3: Simple scheduling example for insight I4.

Test case

ID

Properties

Violated

Average States

Covered

No. of Deviations

Covered

Selection

Order

𝜋1 𝜙1 5 2 1

𝜋2 𝜙1 5 1 x

𝜋3 𝜙1 5 0 x

𝜋4 𝜙2 3 2 2

property, and the current protocol state. Although grammar-guided

fuzzers [?] offer semantic meaning-aware mutations, they do not

consider the property being tested and the current state of the pro-

tocol while selecting a message to mutate. Such mutation schemes

are less likely to generate mutated messages that violate a given

security property. Therefore, an effective mutation scheme should

(i) consider the security property being tested while selecting a

transition and (ii) consider the semantic meaning of a message,

the given property, and the current protocol state while mutating

a selected message (i.e., have a clever choice to fill the wildcard

characters of the test skeleton 𝜋𝑎).

Insight I3. To address challenge C3, we consider selecting a tran-

sition to mutate M with a goal to generate traces satisfying test

skeleton 𝜋𝑎 . Such a mutation scheme is property driven since we

aim to satisfy 𝜋𝑎 , which signifies the violation of its corresponding

security property. Also, while mutating any transition in M, we

consider mutating a transition’s observation or destination state.

Mutating the observation may uncover improper handling of pro-

hibited messages. In contrast, mutating the destination state may

uncover certain bypass attacks since these attacks represent skip-

ping certain intermediate states to reach a secure state in protocol

registration/authentication procedures. Moreover, to perform a mu-

tation over the input message, we consider performing operations

on it that are semantic aware (e.g., understanding field boundaries

of any message field), state aware (e.g., setting field values within

or outside a defined range according to the current protocol state)

and also property driven (e.g., creating a plaintext version of a mes-

sage to test at a security context established state, considering the

property that plaintext messages should be dropped at such a state).

Consequently, our mutation scheme is more likely to uncover a

violation of the given security property than other existing works.

❏ Challenge C4: Arbitrarily scheduling the properties and

test traces to test OTA will lead to inefficiency. Once we gener-

ate the set of test traces for all given properties, one can randomly

schedule test traces to execute over-the-air (OTA). However, this

approach is inefficient as it may fail to uncover vulnerabilities or

adequately explore the search space within the given testing budget.

Insight I4. To address challenge C4, Proteus adopts an efficient

scheduling mechanism to uncover vulnerabilities faster. In each

testing iteration, Proteus first selects a property 𝜙 from the prop-

erty set Φ to test and then a trace 𝜋𝑐 to test 𝜙 . Proteus prioritizes

scheduling the properties whose generated traces cover more states

in the guiding PSM, increasing the likelihood of vulnerability de-

tection. After selecting a property 𝜙 , Proteus selects a trace 𝜋𝑐 ,

prioritizing based on the frequency of use of 𝜋𝑐 , the number of al-

ready identified deviations 𝜋𝑐 covers, and the number of instances

of 𝜋𝑐 rendered the target unresponsive. To avoid testing redun-

dant traces, Proteus does not test any further traces of a property

whose violation has already been detected.

As a simple example of our scheduling scheme, consider four

traces, their corresponding property, the average number of states

covered by the traces associated with the property, the number

of already identified deviations covered by the trace, and their

selection order in Table 3. Since traces associated with 𝜙1 cover

more states on average than 𝜙2, Proteus first selects 𝜙1 to test.

Among the three traces associated with𝜙1, suppose all other factors

are the same, but trace 𝜋1 covers more transitions where Proteus
observed a deviation fromM in previous iterations. Proteus then

selects 𝜋1 to test OTA. Now suppose 𝜋1 identified a violation of

property 𝜙1. Then, Proteus discards testing all traces associated

with 𝜙1 (i.e., 𝜋
2
and 𝜋3), and in the next iteration selects 𝜋4 to test.

5 RegExGenerator: CONSTRUCTING TEST

SKELETONS FROM SECURITY PROPERTIES

Proteus first constructs test skeleton(s) for each property 𝜙 ∈ Φ
expressed in PLTL formula and uses the skeletons represented in

regular expressions to generate test cases. To automatically con-

struct test skeletons, we have developed RegExGenerator that takes
a PLTL (past linear temporal logic) formula as input and produces

REs violating the PLTL formula as output. To construct such an RE

𝜎𝑖 , RegExGenerator leverages the PLTL formula’s Abstract Syntax

Tree (AST) and traverses it in pre-order. Nodes in this AST corre-

spond to PLTL operators (e.g., Since 𝑆 , Yesterday 𝑌), while leaves

represent observations (𝛼/𝛾). For instance, Figure 3 presents the
AST for the PLTL formula 𝜙 = 𝑎𝑠𝑚 =⇒ !𝑎𝑖𝑑 ′ 𝑆 𝑎𝑑𝑟 .

To create a violating regular expression for a PLTL formula 𝜙 ,

at each internal (non-leaf) node 𝑛𝑖 during AST traversal, Regex-
Generator needs to satisfy or negate the sub-formula 𝜙𝑛𝑖 rooted

at 𝑛𝑖 based on the semantic meaning of the operators involved

in 𝜙𝑛𝑖 . For this, RegExGenerator recursively satisfies or negates

the expression at 𝑛𝑖 ’s child nodes according to the semantic mean-

ing of the operator at 𝑛𝑖 . While traversing a leaf node 𝑛𝑙 of the

AST, RegExGenerator places a literal or a kleene star element on 𝜎

according to the requirement (satisfaction or negation) at 𝑛𝑙 . For

example, if the operator is a “since” as in !𝑎𝑖𝑑 ′ 𝑆 𝑎𝑑𝑟 in Figure 3,

RegExGenerator attempts to first avoid satisfying the right subtree

𝑎𝑑𝑟 by placing ¬(𝑎𝑑𝑟)∗, and then violate the left subtree by plac-

ing 𝑎𝑖𝑑 ′ after ¬(𝑎𝑑𝑟)∗. Thus it will find ¬(𝑎𝑑𝑟)∗𝑎𝑖𝑑 ′ violating the

“since” operator. Again, for the “implies” operator, RegExGenerator
attempts to first satisfy the left subtree (obtaining RE (.)∗𝑎𝑠𝑚) and

then violate the right subtree (obtaining RE ¬(𝑎𝑑𝑟)∗𝑎𝑖𝑑 ′). Finally,

to construct an RE representing the violation of the given PLTL

formula, the operator/operand at the root node of the AST must be

negated. The final RE 𝜎𝑣 violating 𝜙 will be (.)∗𝑎𝑠𝑚¬(𝑎𝑑𝑟)∗𝑎𝑖𝑑 ′ .

RegExGenerator generates multiple different violating expressions.

It also checks if a previously generated RE already covers the ex-

pression. If so, it discards the new RE.

6 TraceBuilder: GENERATING TEST CASES

FROM TEST SKELETONS AND GUIDING PSM

Given a test skeleton 𝜋𝑎 representing violations of a security prop-

erty 𝜙 ∈ Φ, Proteus uses a guiding PSM M and mutates M to

efficiently generate meaningful test cases 𝜋𝑐 with the shape of 𝜋𝑎 .

State Machine Mutation-based Testing Framework for Wireless Communication Protocols CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

H

⇒
𝑎𝑠𝑚 S

! 𝑎𝑑𝑟

𝑎𝑖𝑑′

𝐻 (𝑎𝑠𝑚 ⇒ !𝑎𝑖𝑑′𝑆 𝑎𝑑𝑟)

(.)∗ 𝑎𝑠𝑚¬ (𝑎𝑑𝑟)∗ 𝑎𝑖𝑑′

Figure 3: Example AST of a PLTL formula.

Note that the guiding PSM used by Proteus can be abstract com-

pared to PSMs extracted from target device implementations. As

such, they are substantially smaller than PSMs learned from com-

mercial devices (§8). One can also use PSMs directly obtained from

RFCs (e.g., [?]) as a guiding PSM. Since Proteus does not require

detailed PSMs, it alleviates the prohibitively high time required to

learn a detailed PSM from target implementations. We now dis-

cuss our PSM mutation strategies and then present our test case

generation mechanism.

6.1 Mutating a PSM

As discussed in challenge C2 in §4, since the guiding PSM is as-

sumed to satisfy all security properties, we need to mutate the

guiding PSM M to generate traces satisfying a test skeleton 𝜋𝑎 ,

which signifies the violation of a security property. Proteus selects

a transition R(𝑞𝑐 , 𝛼,𝛾, 𝑞𝑛) to mutate while generating instantiated

traces satisfying a test skeleton 𝜋𝑎 (described in §6.2). For muta-

tions, Proteus essentially performs two types of operations on a

selected transition R, as discussed below.

❏Mutation kindM1:Mutating the observation of a transition.

In this case, Proteus alters the observation 𝛼/𝛾 of R, i.e., alters
either the input 𝛼 or the output 𝛾 or both based on the input and

output in trace skeleton 𝜋𝑎 when the execution reaches at 𝑞𝑐 .

At any state 𝑞𝑐 , if the trace skeleton 𝜋𝑎 to satisfy requires input

𝛼 ′ and output 𝛾 ′ but the guiding PSM M does not have 𝛼 ′/𝛾 ′at
𝑞𝑐 , to ensure the generated trace conforms with 𝜋𝑎 , we mutate the

transition with 𝛼 ′ at 𝑞𝑐 in M to obtain input 𝛼 ′ and output 𝛾 ′. For
example, in Figure 1, suppose at state 𝑞5 if we require output GUTI_

reallocation _complete for input GUTI_ reallocation _command: Replay ==1

according to the test skeleton. However, since it is not prescribed

at state 𝑞5, we mutate the transition with observation 𝑎𝑔𝑐 (with

input GUTI_ reallocation _command) to obtain input GUTI_ reallocation

command: Replay == 1 and output GUTI reallocation _complete. This

mutation strategy is required to generate traces satisfying 𝜋𝑎 .

On the other hand, if 𝜋𝑎 has a wildcard character at state 𝑞𝑐 ,

Proteus instantiates the wildcard character with a mutated ver-

sion of an input message 𝛼 to detect any deviation from the PSM

that can lead to a security property violation. To increase the likeli-

hood of a mutated message being accepted by a practical protocol

implementation, Proteus considers the semantic meaning of the

input message. It performs one of the six semantic operations. We

summarize these operations with examples in Table 4. These oper-

ations consider the semantics of the message fields, their defined

values and ranges according to the protocol specification, and over-

all message semantics (e.g., plaintext or replayed version). As an

Table 4: List of possible semantic operations performed on an

input message for mutation typeM1. Hop is a 5-bit field in con-

nection_ reqest message in BLE whose value is defined to be

between 5 to 16 according to BLE specifications. attach_accept

and security_mode_command are messages in 4G LTE.

Operation Description Example

OP1
Change value of a field to a defined value

in range
connection_ reqest: Hop == 5

OP2
Change value of a field to prohibited val-

ue/value outside of defined range
connection_ reqest: Hop == 20

OP3

Change value of a field to one of its

boundary values (i.e., setting all bits of

the field to 0 or 1)

connection_ reqest: Hop == 31

OP4

Send the plaintext version of any in-

tegrity protected and/or ciphered mes-

sage

attach_accept: Integrity == 0 & Cipher

== 0

OP5
Combination of applying OP1, OP2, OP3

and OP4 multiple times

attach_accept: Integrity == 0 & Cipher

== 0 & Security_Header_Type == 15

OP6
Replay a previously captured version of

the message
security_mode_command: Replay == 1

example, in Figure 4(i), consider a mutation of the transition with

observation 𝑎𝑎𝑝 (with input attach_ accept: integrity == 0 & cipher == 0

& security_ header _ type == 0, marked blue) at state 𝑞1. If we perform

OP2 operation and change the value of the security_ header _ type

field to a prohibited value 4, we obtain the mutated message 𝑎′𝑎𝑝
with input attach_ accept: integrity == 0 & cipher == 0 & security_ header

_ type == 4. If the target accepts this mutated message, we obtain

attach_complete as a response, which deviates from the guiding PSM.

q0 q1 q2 q3 q4 q5
𝑎𝑒𝑎 𝑎𝑎𝑟

𝑎𝑎𝑝

𝑎𝑠𝑚 𝑎𝑟𝑠

𝑎𝑖𝑑

𝑎𝑑𝑟

𝑎𝑔𝑐

𝑎𝑔𝑟𝑎𝑎𝑝′

𝑎𝑎𝑐

(i) Mutation kindM1

q0 q1 q2 q3 q4 q5
𝑎𝑒𝑎 𝑎𝑎𝑟

𝑎𝑎𝑝

𝑎𝑠𝑚 𝑎𝑟𝑠

𝑎𝑖𝑑

𝑎𝑑𝑟

𝑎𝑔𝑐

𝑎𝑔𝑟

𝑎𝑎𝑝

𝑎𝑎𝑐

(ii) Mutation kindM2

Figure 4: Two kinds of mutations M1 and M2. The transition

labels are presented in Table 1.

❏ Mutation kindM2: Mutating the destination state of a tran-

sition. In this case, Proteus alters the destination state 𝑞𝑛 of a

selected transition R (𝑞𝑐 , 𝛼,𝛾, 𝑞𝑛). The goal of this kind of mutation

is to test whether the input message 𝛼 at state 𝑞𝑐 leads to a state 𝑞𝑚
different than what is expected by the guiding PSM (in this case 𝑞𝑛),

which in turn can lead to an observable deviation or security prop-

erty violation. This kind of mutation enables Proteus to identify

certain bypass attacks, e.g., detect whether any intermediate step

can be bypassed to reach a secure state. To illustrate, in Figure 4(ii),

suppose we perform mutation over the transition with observation

𝑎𝑎𝑐′ at state 𝑞1 (marked blue). We can perform a mutation over

the next state 𝑞2 of the transition by changing the next state of

the transition to 𝑞5. This mutation would generate an instantiated

trace that tests whether the target incorrectly reaches state 𝑞5 if a

plaintext attach_accept is fed at 𝑞1.

6.2 Instantiated Trace Generation

Given a test skeleton 𝜋𝑎 representing violation of a property 𝜙 ∈ Φ,
a guiding PSM M, a mutation budget 𝜇 and a length budget 𝜆, we

leverage insight I2 and solve the problem of generating instantiated

traces by combining the solutions of overlapping subproblems. For

this, we formulate a dynamic programming problem as follows.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Syed Md Mukit Rashid et al.

G(M, 𝜋a, qc, 𝜇, 𝜆): At any state q𝑐 ∈ Q of a guiding PSMM, we
want to craft a set of instantiated traces T , where each instantiated
trace (i) satisfies the test skeleton 𝜋𝑎 , (ii) is the outcome of a maximum
of 𝜇 mutations applied on any trace in the guiding PSMM and (iii)
is within a maximum length 𝜆.

Consider we are at state𝑞𝑖 of our guiding PSMM and we need to

satisfy the 𝑗𝑡ℎ observation 𝑙 𝑗 = (𝛼 𝑗/𝛾 𝑗) of 𝜋𝑎 , i.e., the test skeleton
up to input symbol 𝑙 𝑗−1 has been satisfied and the next wildcard

character in 𝜋𝑎 is 𝑙𝑘 . Also, at 𝑞𝑖 , consider the remaining mutation

budget is 𝜇𝑖 , and the remaining length budget is 𝜆𝑖 . For this problem,

we consider the following four cases, formulating subproblems and

prepending suitable observations.

Case I. If there is a transition R(𝑞𝑖 , 𝛼,𝛾, 𝑞𝑚) at state 𝑞𝑖 whose
observation satisfies 𝑙 𝑗 , TraceBuilder can leverage solutions from

the destination state𝑞𝑚 that satisfies 𝜋𝑎 from observation 𝑙 𝑗+1, with
mutation budget 𝜇𝑖 and length budget 𝜆𝑖−1. TraceBuilder prepends
𝑙 𝑗 to the instantiated traces being generated from the subproblem.

Since it places an observation (𝑙 𝑗) in the instantiated trace, it uses

length budget 𝜆𝑖−1 to formulate the subproblem.

Case II. If there is no transition at 𝑞𝑖 satisfying 𝑙 𝑗 , TraceBuilder
can consume a mutation to mutate the transition for 𝛼 𝑗 , the input

message of observation 𝑙 𝑗 . TraceBuilder places observation 𝑙 𝑗 in

the instantiated trace using mutation kindM1. Again, TraceBuilder
leverages traces from the destination state 𝑞𝑚 that satisfies 𝜋𝑎

from observation 𝑙 𝑗+1, with length budget 𝜆𝑖−1 but using mutation

budget 𝜇𝑖−1 since it consumed a mutation to place 𝑙 𝑗 . TraceBuilder
prepends 𝑙 𝑗 to the obtained instantiated traces from the subproblem.

Case III. If there is a transition R(𝑞𝑖 , 𝛼,𝛾, 𝑞𝑚) at state 𝑞𝑖 whose
observation (𝛼/𝛾) satisfies wildcard character element 𝑙𝑘 , Trace-
Builder leverages solutions from the destination state 𝑞𝑚 that sat-

isfies 𝜋𝑎 from observation 𝑙 𝑗 with mutation budget 𝜇𝑖 and length

budget 𝜆𝑖−1. It prepends observation (𝛼/𝛾) to the obtained instan-

tiated traces from the subproblem.

Case IV. Finally, for any transition R(𝑞𝑖 , 𝛼,𝛾, 𝑞𝑚) at state 𝑞𝑖 ,
TraceBuilder can mutate the transition’s observation and place a

mutated observation (𝛼/𝛾)𝑚 usingmutation kindM1. TraceBuilder
can leverage solutions from the destination state 𝑞𝑚 that satisfies

𝜋𝑎 from observation 𝑙 𝑗 with length budget 𝜆𝑖−1 and also mutation

budget 𝜇𝑖−1 since we perform a mutation. It prepends the mutated

observation (𝛼/𝛾)𝑚 to the obtained instantiated traces from the

subproblem. Note that we only place amutation marker in this case.

This marker would be resolved later by TraceDispatcher (§7). Note
that we can generate multiple traces to test OTA by placing various

mutated messages in place of the mutation marker.

Furthermore, for each case, TraceBuilder may also consider mu-

tating the destination state of the selected transition (mutation kind

M2). In that case, TraceBuilder mutates the destination state to

another state 𝑞𝑚𝑢𝑡 and formulates the subproblem from state 𝑞𝑚𝑢𝑡

with mutation budget 𝜇−1. TraceBuilder terminates if either 𝜋𝑎 is

satisfied or runs out of mutation or length budget.

7 TraceDispatcher: TEST EXECUTION AND

FLAW DETECTION

After TraceBuilder generates instantiated traces associated with

each property in its property setΦ, the TraceDispatcher component

of Proteus iteratively selects a property 𝜙 and then an instantiated

test trace 𝜋𝑐 generated from 𝜙 to test OTA. TraceDispatcher runs
for 𝑡 iterations, where 𝑡 is proportional to 𝛽 . TraceDispatcher con-
sists of three components: a scheduler, an adapter and an observer.
Scheduler. In each testing iteration, the scheduler of TraceDis-
patcher first chooses a property 𝜙 ∈ Φ to test using weighted

random sampling. The scheduler determines the weight of each

property by determining the average number of distinct states in the

guiding PSM covered by all instantiated traces of 𝜙 . This scheme fa-

vors properties whose instantiated traces cover more states within

the guiding PSM and implicitly prioritizes traces more likely to

violate a security property within the input property set Φ.
Once a property 𝜙 is selected, the scheduler chooses an instanti-

ated trace 𝜋𝑐 to test from all traces associated with 𝜙 . Note that an

instantiated trace may or may not have mutation markers (case IV

in §6.2). The scheduler prioritizes selecting instantiated traces with

mutation markers since they test mutated input messages, which

are more likely to trigger property violations. Furthermore, if the

scheduler chooses an instantiated trace with a mutation marker, it

first prioritizes scheduling traces that mutate messages that were

not mutated in previous iterations. Again, among the traces that

have messages not mutated previously, the scheduler selects an in-

stantiated trace based on three factors: (i) the frequency of selection

(𝑓) of 𝜋𝑐 ; (ii) the number of deviations covered by 𝜋𝑐 (𝑑); (iii) the

number of instances where 𝜋𝑐 rendered the IUT I𝑃 unresponsive

(𝑢). The scheduler selects the instantiated trace with the minimum

score (𝑝 = 𝑓 − 𝑑 + 𝑢), randomly choosing one in case of a tie. The

scheduler prioritizes instantiated traces that trigger known devia-

tions since they can lead I𝑃 to an inconsistent state where Proteus
is more likely to find property violations. Also, the scheduler is

less inclined to traces that rendered I𝑃 unresponsive since we can-

not find further property violations from an unresponsive I𝑃 . The
scheduler randomly performs one of the six operations defined in

Table 4 to mutate a message with a mutation marker and obtain a

mutated input message.

Adapter. The adapter takes an instantiated trace selected by the

scheduler to test OTA. It translates the abstract input symbols

into concrete messages and sends them to I𝑃 . Also, it records the
response from I𝑃 , converts it back into an abstract symbol, and

sends the response sequence back to the observer.

Observer. The observer analyzes the response from I𝑃 to an instan-

tiated trace and detects whether it violates any security properties.

If there is any deviation from the guiding PSM, the observer au-

tomatically checks for property violation by checking the trace

against the violating test skeletons (represented as REs) generated

from the security properties. Additionally, to determine unrespon-

siveness, the observer identifies the final protocol state 𝑞𝑓 according
to the guiding PSM for each test trace. It then executes a message

𝛼 𝑓 OTA expected to elicit a valid output message 𝛾𝑓 . If I𝑃 does not

respond, it is deemed unresponsive.

8 EXPERIMENTS

We evaluate Proteus with the 4G LTE’s NAS and RRC layer pro-

tocols (e.g., mobility management procedures) and BLE’s SMP and

Link Layer protocols [?] based on the following research questions:

• RQ1. How effective is Proteus in finding novel and known

issues in LTE and BLE implementations (§9)?

State Machine Mutation-based Testing Framework for Wireless Communication Protocols CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

• RQ2. How effective and efficient Proteus is compared to exist-

ing works (§10)?

• RQ3. How does Proteus perform with respect to generating

test cases (§11)?

8.1 Experiment Setup For Testing

We combine LTE’s NAS and RRC layers’ protocols and construct

a single guiding PSM consisting of 7 states with 86 transitions in

total. For BLE, our guiding PSM has 15 states with 244 transitions in

total. Compared to PSMs learned from implementations [? ?], the

guiding PSMs in Proteus are substantially smaller. For example,

an average-sized PSM learned from Pixel3A [?] reportedly had 21

states and 548 transitions, which is three times larger than Proteus
guiding PSM for 4G LTE.

For LTE, we set up a base station using srsRAN and a USRP

B210, and a core network using srsEPC. We run them using an Intel

i7-8665U processor with 16GB RAM. For BLE, we use nRF52840

acting as a central to test peripheral devices. We have tested 11

LTE and 12 BLE devices. Note that we updated all target devices

with the latest patches before performing testing. The details of our

tested devices (including SoC model, vendor, and baseband), and

the identified issues in each device are provided in Tables 12 and

13 in Appendix.

9 IDENTIFIED ISSUES

To answer RQ1, we have tested each device with 3000 OTA queries

using Proteus. Our evaluation reveals that Proteus identifies 31

and 81 vulnerabilities in LTE and BLE, respectively, with 3 unique

new issues in LTE and 7 unique new issues in BLE implementations.

The identified issues resulted in five new CVEs, two bug bounties,

and 9 acknowledgments from various vendors such as Google,

Samsung, Qualcomm, and Microchip.

Tables 5 and 6 summarize the identified issues for 4G LTE and

BLE, respectively. The tables show the number of distinct devices

where each issue was identified, the impact of each attack, and any

new CVE/acknowledgment obtained by Proteus for each attack.

We discuss in detail some of our identified issues in 4G LTE and

BLE in §9.1 and §9.2, respectively.

9.1 Identified Issues in LTE

Attacker model. Similar to prior works [? ? ?], we assume that

a Dolev-Yao attacker [?] knows the victim’s Cell Radio Network

Temporary Identity (C-RNTI) using the victim’s phone number [? ?

?] and then send malformed messages to the victim device using

a fake base station (FBS) [? ?]. For attacks L-E3 and L-E4, the

attacker requires an adversary in addition to a FBS to capture and

replaymessages. The attacker can also use aMachine-in-the-Middle

(MitM) relay [? ?] to exploit the vulnerabilities, as MitM relays are

more powerful than FBS.

L-E8: authentication_reqest with separation bit 0 causes fur-

ther security mode procedure failure. According to the 4G NAS

specifications (TS 24.301, clause 5.4.2.6), a UE should send an authen-

tication_failure message with EMM cause # 26 upon receiving an

authentication_reqest message with “separation bit” set to 0. How-

ever, after successful authentication, affected devices respond with

an authentication_failure message with EMM cause #20 in response

UE eNBFBS

attach_req

auth_req

attach_req

auth_req

auth_resp auth_resp

sec_mode_command
sec_mode_reject

~6 minutes
attach_req

auth_failure
(EMM Cause 20)

auth_req
(Seperation bit 0)

Device
Unresponsive

(a) After authentication.

UE eNBFBS

attach_req

auth_req

attach_req

auth_req

auth_resp auth_resp

sec_mode_command
sec_mode_complete

auth_failure
(EMM Cause 20)

auth_req
(Seperation bit 0)

(b) Before authentication.

Figure 5: authentication_reqest with separation bit 0 causing

further security mode procedure failure.

to such a message. The device then moves to “unauthenticated”

state, leading to a subsequent failed security mode control. Fig-

ure 5(a) shows the attack steps where the attacker sends such a

malicious message to the victim UE using an FBS. Note that if the at-

tacker attempts to send a malformed authentication_reqest message

before a successful authentication, the attack does not succeed (see

Figure 5(b)). This signifies the stateful nature of the vulnerability

that the existing works [? ?] cannot detect.

Impact. Upon receiving the malformed message, Nexus 6P and

Samsung A71 remained unresponsive for over 6 minutes and then

attempted to reconnect. The attacker can repeat the attack steps,

leading to a prolonged denial-of-service (DoS) attack on the victim

user. Qualcomm identified the issue as medium severity and as-

signed a CVE. Note that the DoS attacks identified by Proteus are

different in nature from spectrum jamming [? ?], which are easily

detectable, expensive, and unreliable. In contrast, our identified DoS

attacks exploit logical vulnerabilities and allow targeting a single

device with only one software-defined radio (SDR) and cannot be

thwarted by jamming-specific defenses [?].

L-E9: Respond to authentication_reqest with header 3 with

security_ mode_reject. The affected devices incorrectly interpret a

malformed authentication_reqest with security header 3 before a

successful authentication as a security_mode_command, and respond

with security_ mode_reject. However, in this scenario, the TS 24.301 [?

] clause 7.5.1 suggests returning a emm_status message with cause

#96 ‘invalid mandatory information’.

Impact. Since a correctly implemented device would drop this

packet, an attacker can fingerprint the victim device up to the

baseband manufacturer level and launch attacks by combining

other known vulnerabilities at the baseband-chipset level. Huawei

acknowledged this vulnerability as low severity.

L-E5: Accepts rrc_ security_ mode_command with EIA0 IE. The af-

fected devices respond with rrc_security_ mode_ complete to the plain-

text rrc_ security_ mode_command with EIA0 message. This flaw leads

to a remote privilege escalation attack with no additional execution

privileges required. The attacker can bypass the RRC layer secu-

rity activation by exploiting this vulnerability. The victim UE then

accepts all plaintext RRC messages without integrity protection.

Proteus detected this vulnerability in Pixel7. Google assigned a

high-severity CVE to it. Although Rupprecht et al. [?] identified

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Syed Md Mukit Rashid et al.

Table 5: Vulnerabilities identified by Proteus for COTS LTE devices. NAS-SC: NAS security context establishment, AS-SC: AS

security context establishment. : known vulnerability found on devices previously confirmed to have the attack, : known

vulnerability found on new device not previously reported to have the vulnerability, : previously unknown vulnerability.

E-Exploitable, I-Interoperability, O-Other issue.

Issue Description Category
#Vuln.

Instance
Impact

Newly Obtained CVEs/ Acknowledge-

ments

L-E1 Accepts plaintext identity_reqest After NAS-SC [? ?] 3 Location Tracking Marked as duplicate by Samsung
1

L-E2 Accepts plaintext authentication_reqest after NAS-SC [? ?] 4 Location Tracking, DoS Marked as duplicate by Samsung

L-E3 Accepts replayed security_mode_command after NAS-SC [? ?] 4 Location Tracking Marked as duplicate by Unisoc

L-E4 Accepts replayed guti_reallocation_command after attach procedure [?] 2 Location Tracking Marked as duplicate by Unisoc

L-E5 Accepts rrc_ security_ mode_command with EIA0 IE after NAS-SC [? ? ?] 1 Security Bypass High Severity CVE from Google

L-E6 rrc_ security_ mode_command with EIA0 IE after NAS-SC causes unresponsiveness [?] 4 DoS -

L-E7 Accepts plaintext counter_check before AS-SC [?] 4 Fingerprinting Marked as duplicate by Unisoc

L-E8 authentication_reqest with separation bit 0 cause further security mode procedure failure 4 DoS Medium Severity CVE from Qualcomm

L-E9 Respond to authentication_reqest with header 3 with security_ mode_reject 1 Fingerprinting Acknowledged by Huawei

L-O1 Respond to identity_ reqest (TMSI) with identity_ response (IMSI) before NAS-SC 4 Fingerprinting -

a similar issue in older devices, Proteus detected L-E5 in new

devices not previously reported to have the vulnerability.

9.2 Identified Issues in BLE

Attacker model. We also assume the Dolev-Yao attacker model

for BLE. Similar to previous works [? ? ?], the attacker acts as a

malicious central and can intercept, replay, modify, or drop packets.

The attacker only knows the public information of the target periph-

eral (e.g., Bluetooth name, address, protocol version number, and

capabilities) and does not require knowledge regarding any secret

keys shared between the target peripheral and any other device.

For issues B-E1, B-E2, B-E4, B-I1, B-O1 to B-O3, the attacker

can directly establish a connection with the victim peripheral to

launch the attacks. For all the other issues, the attacker must inject

malicious traffic to the target peripheral [?] when the target pairs

with another device for the first time.

B-E9: Accepts two continuous pairing_reqest leading to DoS.

The affected peripherals cannot complete the pairing procedure

when a malicious central sends two consecutive pairing_reqest mes-

sages. On the other hand, Microchip’s BLE device responds to both

pairing_reqest with pairing_response. For other devices not having

this vulnerability, the second pairing_reqest is ignored, and the

pairing procedure proceeds as usual.

Impact. This attack leads to DoS, where the victim cannot complete

the pairing process. If the central device does not have an auto-

reconnect feature, the pairing procedure needs to be manually

re-initiated, and even with auto-reconnect, the device needs to

restart the entire pairing procedure again. Also, the vulnerability

can be exploited to perform a manufacturer-level fingerprinting of

vulnerable implementations. Microchip assigned a CVE with low

severity to this issue.

B-E1, B-E2, B-E6, B-E7, B-E10 and B-E11. To exploit these vul-

nerabilities, i.e., B-E6, B-E7, B-E9 to B-E11, the adversary assump-

tions are identical to those for B-E9. For B-E6, we observe that

before the pairing process starts, the affected devices will respond

to length_reqest with MaxRxOctets and MaxTxOctects field set to

1, and as a result, the subsequent pairing process cannot be com-

pleted. For B-E7, we observe that sending Data Physical Channel

PDUs, such as MTU_reqest, length_reqest, version_ reqest, after en-

cryption_reqest, can cause the peripheral to disconnect the link.

For B-E10, we observe that the affected devices cannot finish pair-

ing if it receives a enc_pause_req_plaintext after public_key_exchange.

For B-E11, an affected device disconnects after receiving a chan-

nel_map_reqest with the unchanged Channel Map field. For B-E1

and B-E2, the device cannot recover by itself and requires manual

reboot. For the other identified DoS attacks, the pairing procedure

needs manual re-initiation. Also, sending the packets repeatedly

can lead to prolonged DoS and battery depletion for each case.

B-E4: Accepts malformed connection_ reqest with increased

data length field value. An implementation accepts connection_

reqest with an increased Data Length value. The connection_ reqest

is extended to 247 bytes when Data Length field value is increased.

Thus, after accepting this packet, the implementation may allocate

more memory than required.

Impact. Since the vulnerable device accepts L2CAP packets with

the wrong length, more bytes than expected are allocated in mem-

ory for an incorrectly implemented device. Sweyntooth [?] found

a similar vulnerability for pairing_reqest packet, leading to memory

leakage. Moreover, an attacker can fingerprint the device at theman-

ufacturer’s level, which may be further exploited by abusing other

known firmware-level vulnerabilities. Samsung acknowledged this

issue and provided a medium-severity CVE.

B-E3: Bypassing passkey-entry during legacy pairing. During

the passkey-entry association method, a malicious central can by-

pass the passkey entry step by sending a sm_random message with a

temporary key set to 0. This bypasses all MitM protection mecha-

nisms inherent in the passkey entry method. BLEDiff [?] initially

identified this issue in older devices. However, we identified this

issue on several newer devices, including peripherals from Sam-

sung, Google, Hisense, and Motorola (see Table 13 in Appendix).

Samsung assigned a CVE with medium severity to this issue.

Other Issues. Proteus also identified several issues, such as ac-

cepting malformed connection_ reqest with a Hop field greater than

the defined range (B-O1), accepting version_ reqest message mul-

tiple times (B-O2) and accepting encryption_reqest with non-zero

EDIV and Rand field value (B-O3). The attacker can exploit these

to fingerprint the affected device.

10 COMPARISONWITH EXISTINGWORKS

To address RQ2, we compare Proteus with existing LTE and BLE

testing frameworks. We first provide a qualitative comparison with

respect to different metrics and then provide empirical comparisons

with respect to the number of vulnerabilities detected, coverage,

and cumulative vulnerability detection over time.

State Machine Mutation-based Testing Framework for Wireless Communication Protocols CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 6: Vulnerabilities identified by Proteus for COTS BLE devices. All interpretations are the same as for Table 5.

Issue Description Category
#Vuln.

Instance
Impact

Newly Obtained CVEs/ Acknowledge-

ments

B-E1 Stops advertising if connection_ reqest with Interval/channelMap field set to 0 is sent [? ?] 3 Crash Acknowledged by MediaTek as low severity

B-E2 Stops advertising with plaintext encryption_pause_response [?] 2 Crash
Acknowledged by MediaTek & Samsung as

low severity

B-E3 Bypassing passkey entry in legacy pairing [?] 10
Privacy/ Null

Encryption
Medium severity CVE from Samsung

B-E4 Accepts malformed connection_ reqest message with increased length 8 Memory Leakage Medium severity CVE from Samsung

B-E5 Accepts sm_confirm with wrong values [?] 1 DoS -

B-E6 length_reqest with MaxRxOctets and MaxTxOctets fields set to 1 cause DoS 2 DoS Acknolwedged by MediaTek as low severity

B-E7 Unexpected Data Physical Channel PDU during encryption start procedure cause DoS 11 DoS Acknolwedged by Samsung

B-E8 public_key_exchange in legacy pairing leading to DoS [?] 1 DoS
Reported by Sweyntooth [?] and fixed in

newer version

B-E9 Two continuous pairing_reqest leading to DoS 2 DoS CVE from Microchip with low severity

B-E10 Plaintext encryption_pause_reqest cause DoS 4 DoS
Acknolwedged by MediaTek & Samsung as

low severity

B-E11 channel_map_reqest with unchanged channelMap field cause DoS 6 DoS -

B-I1 Issue with OOB Pairing Fails [?] 8 Fingerprinting -

B-O1 Accept connection_ reqest with Hop field > defined range 9 Fingerprinting
Acknowledged by MediaTek as a functional

bug (Negligible Security Impact)

B-O2 Accept version_ reqest multiple times [?] 2 Fingerprinting Acknowledged by Samsung

B-O3 Accept encryption_reqest with non-zero EDIV and Rand [?] 12 Fingerprinting
Acknowledged by MediaTek as a functional

bug (Negligible Security Impact)

10.1 Qualitative Comparison

We compare Proteus with existing works with respect to different

metrics as shown in Table 7. Among these works, DIKEUE [?],

DoLTEst [?], Contester [?], BaseComp [?], BLEDiff [?] and BLE

Blackbox Fuzzing [?] perform stateful testing. However, DIKEUE,

BaseComp, BLEDiff, and Blackbox Fuzzing do not consider any

specific properties corresponding to the protocols while generat-

ing queries. Although LTEFuzz [?], DoLTEst and Contester have

property-guided generation, LTEFuzz is not stateful, and DoLTEst

and Contester do not generate test cases dynamically. Also, Sweyn-

Tooth [?] does not consider the guidance of properties while gen-

erating test cases.

Further, DoLTEst, LTEFuzz, and SweynTooth do not perform

positive testing, and only DIKEUE, DoLTEst, Contester, BLEDiff,

and Blackbox Fuzzing have the capabilities to identify interoper-

ability issues. Finally, none of the works except Proteus consider

efficient scheduling of test traces to maximize property violation

detection within a fixed testing budget. Only Proteus simultane-

ously covers all these aspects of testing. In addition, it is the only

dynamic framework that can provide control over the amount of

test traces being generated and, hence, can be tuned to satisfy a

time budget for testing.

Table 7: Comparison with existing testing approaches.

Approach Dynamic
Stateful

Testing

Property

Focused

Testing

Positive

Test

Cases

Time Budget

Wise Tuning

Interoperability

Issue

Detection

DIKEUE [?] ✓ ✓ ✗ ✓ ✗ ✓

LTEFuzz [?] ✓ ✗ ✓ ✗ ✗ ✗

DoLTEst [?] ✗ ✓ ✓ ✗ ✗ ✓

Contester [?] ✗ ✓ ✓ ✓ ✗ ✓

Basecomp [?] ✗ ✓ ✗ ✓ ✗ ✗

BLEDiff [?] ✓ ✓ ✗ ✓ ✗ ✓

SweynTooth [?] ✓ ✗ ✗ ✗ ✗ ✗

Blackbox Fuzzing [?] ✓ ✓ ✗ ✓ ✗ ✓

Proteus ✓ ✓ ✓ ✓ ✓ ✓

10.2 Total Number of Vulnerability Detection

We compare Proteus with DIKEUE [?], and DoLTEst [?] for LTE,

and BLEDiff [?] and Sweyntooth [?] for BLE, with respect to

the total number of identified vulnerabilities without considering

Table 8: Detected vulnerability count by existing works.

Baseline
#Vuln. both Proteus

and Baseline can Identify

#Vuln. only Proteus
can Identify

#Vuln. only Baseline

can Identify

DIKEUE 15 4 0

DoLTEst 25 5 1

BLEDiff 13 7 0

Sweyntooth 18 8 2

any time budget. For each vulnerability, we determine whether

the vulnerability is identifiable by– (i) only Proteus, (ii) only the

baseline work, or (iii) both works. For DIKEUE [?] and BLEDiff [?

], we used their provided alphabet.

We present the results in Table 8. Our analysis reveals that

Proteus can identify all vulnerabilities detected by the existing

works except for one identified by DoLTEst [?]. To detect this par-

ticular vulnerability, DoLTEst manually crafts and sends two traces

to I𝑃 : one with an identity_reqest message using security header

12 and another using security header 15, observing any differences

in the target’s response. In contrast, Proteus can automatically

generate and reason about only one trace at a time, meaning it can

only check if a single trace violates any security properties at once.

Proteus is not designed to reason about hyper-properties which

require simultaneous consideration of multiple traces.

In contrast, even without considering a testing budget, DoLTEst

[?] cannot detect replay vulnerabilities (e.g., L-E3, L-E4) and also

stateful vulnerabilities where the vulnerability is triggered at a

state not defined by it. For example, issue L-E8 can only be trig-

gered after authentication and before NAS security activation, but

DoLTEst does not incorporate this state. Sweyntooth [?] cannot

detect logical vulnerabilities because it lacks a test oracle to identify

such issues. Furthermore, to detect all vulnerabilities identified by

Proteus through an automata-based learning approach [? ?], we

must incorporate a set of alphabet containing all symbols used

by Proteus, i.e., all messages, message fields, and their mutations

during PSM learning. Using this alphabet in a 4G LTE environ-

ment (111 symbols) with DIKEUE [?] would require 87,246 unique

queries (∼133 days if tested OTA) to learn the PSM of an imple-

mentation, taking over four months to detect all vulnerabilities

Proteus identified with 3000 queries (2 days when tested OTA).

Additionally, as shown in Table 8, Proteus detects 4-5 new

vulnerabilities in LTE and 7-8 new vulnerabilities in BLE compared

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Syed Md Mukit Rashid et al.

to these prior works. Thus, Proteus is more effective in identifying

vulnerabilities in the tested protocols.

10.3 Vulnerability Count Growth

We demonstrate Proteus ’s efficiency in detecting vulnerabilities

over time. This evaluation also demonstrates the quality of the

generated traces by Proteus to detect vulnerabilities. We compare

Proteus with the existing works in terms of cumulative vulnera-

bility count on 3 devices from BLE and 2 devices on LTE. Further,

since we focus on logical bugs, we consider the security properties

as an oracle to detect vulnerabilities. Note that we did not observe

any false positives (i.e., any reported property violation that does

not result in exploitable vulnerability). The default value of the

length budget parameter for TraceBuilder is 𝑙 + 1, where 𝑙 is the

number of observations in any test skeleton for properties. Also,

we set the default mutation budget to 2.

Cumulative vulnerability count on BLE devices. We compute

the cumulative vulnerability count obtained over time on three

BLE devices– Galaxy S6, Galaxy A22, and Oppo Reno7, with both

Proteus and BLEDiff [?]. We consider BLEDiff as our baseline.

However, BLEDiff learns the PSM of the target device first and then

performs differential testing. Thus, to make a fair comparison, we

consider the queries generated during learning as input queries to

detect vulnerabilities and use the security properties obtained for

Proteus as an oracle to determine whether any vulnerability is

detected. We run Proteus and BLEDiff for 24 hours and count the

number of detected vulnerabilities. We run the experiments for 3

iterations and present their average in Figure 6.

0 6 12 18 24
Time (hr)

0

2

4

6

#V
ul

ne
ra

bi
lit

ie
s

BLEDiff
Proteus

(a) Galaxy A22

0 6 12 18 24
Time (hr)

0

1

2

#V
ul

ne
ra

bi
lit

ie
s

BLEDiff
Proteus

(b) Galaxy S6

0 6 12 18 24
Time (hr)

0

2

4

#V
ul

ne
ra

bi
lit

ie
s

BLEDiff
Proteus

(c) Oppo Reno7

Figure 6: Cumulative vulnerability comparison in BLE.

Figure 6 shows that Proteus can detect more than 5 vulnerabili-

ties on average within 24 hours, whereas the learning queries from

BLEDiff can only detect a maximum of 2 vulnerabilities in the tested

devices. Although Proteus, at first, falls behind BLEDiff in speed

in S6, upon inspection, we find that the only vulnerability identified

by BLEDiff is a trivial one, requiring a single message, and Proteus
later finds more vulnerabilities, which BLEDiff cannot detect in

24 hours. In other cases, Proteus consistently performs better

than BLEDiff. This demonstrates that Proteus is more efficient in

detecting vulnerabilities than BLEDiff’s automata learning-based

approach, suggesting a better quality of the generated traces.

Cumulative vulnerability count on LTE devices. For LTE, we

consider Pixel7 and Huawei P8 Lite and compute the cumulative

vulnerabilities detected over time by both Proteus and the baseline

works– DoLTEst [?], DIKEUE [?]. We run our experiment for ∼
7 hours since all DoLTEst queries are executed within that period.

Again, we run each test for 3 iterations and report the average count

in Figure 7.

0 1 2 3 4 5 6 7
Time (hr)

0

1

2

3

#V
ul

ne
ra

bi
lit

ie
s

(a) Pixel 7

0 1 2 3 4 5 6 7
Time (hr)

0

1

2

#V
ul

ne
ra

bi
lit

ie
s

DoLTEst
DIKEUE
Proteus w/o schedule
Proteus

(b) Huawei P8 Lite

Figure 7: Cumulative vulnerability comparison in LTE.

Figure 7 shows that Proteus detects 3 and 2 vulnerabilities on

average within 7 hours in Pixel7 and Huawei P8lite, respectively,

whereas DoLTEst detects 2 and 1 on average. Moreover, the fig-

ure presents that Proteus detects those vulnerabilities faster than

DoLTEst and DIKEUE, representing its superior efficiency.

10.4 Coverage Growth

This experiment aims to evaluate the efficacy of the generated traces

with respect to coverage growth.

0 4 8 12 16 20 24
Hours

0

400

800

1200

1600

#B
ra

nc
he

s C
ov

er
ed

BLEDiff
Proteus

(a) BLE coverage

0 4 8 12 16 20 24
Time (hr)

0

200

400

600

800

1000

#B
ra

nc
he

s C
ov

er
ed

DoLTEst
DIKEUE
Proteus_noscheduling
Proteus

(b) LTE coverage

Figure 8: Coverage growth over time.

Coverage growth in BLE devices. At first, we compare Proteus
against BLEDiff [?] with respect to the number of branches covered

over time while testing BLE implementations. Similar to §10.3, we

consider the queries used for learning PSM of the target implemen-

tation as inputs to BLEDiff. Using BTStack v1.5.6.3 [?] as the target,

we perform three 24-hour runs of both Proteus and BLEDiff to

determine average branch coverage.

We present the results in Figure 8 (a), which shows that Proteus
achieves ∼ 10% more coverage 3 times faster than BLEDiff.

Coverage growth in LTE devices. For LTE, we compare Proteus
against DIKEUE [?] and DoLTEst [?]. We run each tool 3 times on

srsUE [?], with each run lasting 24 hours, and report their average

branch coverage over time. Figure 8(b) shows the coverage growth

in LTE devices, where it is evident that Proteus achieves more

branch coverage faster than both the baselines.

11 PERFORMANCE OF PROTEUS
Effectiveness of considering both security property and guid-

ing PSM. We compare Proteus with two approaches described in

§3: (i) PSM only approach, where we sample traces from our guiding

PSM and performmutations without any guidance (ii) Property-only
approach, where we consider a RE representing the violation of the

security property, and instantiate the RE using arbitrary observa-

tions independent of any guidance from a PSM. We use an RE repre-

senting the acceptance of a replayed guti_reallocation_command attack

State Machine Mutation-based Testing Framework for Wireless Communication Protocols CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 9: Regular expression representing acceptance of a

replayed guti_reallocation_command and security_mode_command

Property Expression

𝜎𝑔 (enable_s1/ attach_reqest) (authentication_reqest/ authentication_response)

(.)∗ (security_mode_command/ security_mode _complete) (.)∗ (rrc_ security_

mode_command/ rrc _ security _mode _complete) (.)∗ (attach_accept/ at-

tach_complete) (.)∗ (guti_reallocation_command/ guti _ reallocation _ complete) (.)∗
(guti_reallocation_command: replay == 1/ guti _ reallocation _ complete)

𝜎𝑠 (enable_s1/ attach_reqest) (authentication_reqest/ authentication_response) (.)∗
(security_mode_command/ security_mode _complete) (.)∗ (security_mode_command:replay
== 1/ security_mode _complete)

Table 10: No. of traces generated for varyingmutation budget.

Property

Number of

Observations

Number of

Wildcards

Length

Budget

Mutation Budget

1 2 3

𝜎𝑠 4 2 5 22 53 63

𝜎𝑔 7 5 8 49 121 166

𝜎𝑔 7 5 9 1441 5662 11560

after a successful registration procedure provided in Table 9. We

test a HiSense F50+ device to check the number of queries it takes

to detect the vulnerability using the two approaches and Proteus.
We observe that Proteus and the property-only approach take

366 and 1690 queries to detect the vulnerability, respectively. The

PSM-only approach cannot detect the vulnerability in 3000 queries.

This signifies that combining the guidance from both PSM and a

security property assists in quickly discovering the vulnerability.

Effect of varying mutation and length budget. We examine

how the number of generated instantiated traces varies accord-

ing to the length and mutation budget we set in TraceBuilder. We

consider the two regular expressions 𝜎𝑔 and 𝜎𝑠 (Table 9), repre-

senting the acceptance of replayed guti_reallocation_command and

security_mode_command, respectively, as text skeletons.

To observe the effect of varying the length budget, we set the

mutation budget to 2 and varied the length budget from 4 to 10.

The number of unique instantiated traces generated for both the

test skeletons are presented in Table 11. We observe that the length

budget has to have a minimum length equal to at least the number

of literals present in the trace skeleton since, for a lower length

budget, no sequence would be able to satisfy the given skeleton.

On the other hand, the total number of unique traces generated

increases as the length budget increases.

To observe the effect of varying the mutation budget, we vary it

from 1 to 3 for both trace skeletons. We observe that if the length

budget is constrained, e.g., a length budget of 5 with 4 literals in

𝜎𝑠 , then even with a higher mutation budget, we would not have

many more test cases since there would be no space to inject any

mutation. However, if the length budget is increased, the number of

traces generated increases with the increase of the mutation budget.

However, we empirically observed that a mutation budget of more

than 2 did not yield any extra vulnerabilities.

Efficiency of scheduling approach. We compare with a version

of Proteus that randomly schedules properties and instantiated

traces (denoted as Proteus w/o scheduling). The experimental

setup is the same as Proteus. Figure 8 and 7 show its coverage and

cumulative vulnerability count over time. We observe that with

our scheduling approach, we reach a higher coverage and detect

vulnerabilities faster.

Table 11: Number of unique traces generated with various

length budget values.

Property # Literals # Kleene Star Length Budget (No. Of Unique Traces)

4 5 6 7 8 9 10

𝜎𝑠 4 2 1 62 2638 >20000 >20000 >20000 >20000

𝜎𝑔 7 5 0 0 0 1 121 5662 >20000

12 DISCUSSIONS

Scope of Proteus. In addition to logical bugs, Proteus can concep-

tually cause crashes of the COTS device under test due to memory

bugs (e.g., use-after-free). As Proteus operates in a black box set-

ting, it cannot transparently observe inside the analyzed devices to

discern crash bugs. As such, we consider such crash-inducing bugs

to be outside Proteus’s scope.
Proteus’s reliance on statemachine and desired properties.As

discussed before, Proteus relies on having access to the protocol’s

state machine and its desired security and privacy properties to

generate meaningful test cases. One can consider this a limitation

since one has to obtain both the state machine and properties of

a protocol before testing of its implementation can commence.

In our evaluation, we, however, demonstrate that access to this

extra information is well worth the effort as it enables Proteus to

generate high-quality test cases within a given testing budget.

Prior works applied formal verification techniques to evaluate

the security and privacy of different protocol designs [? ?], where

both protocol models and properties are manually constructed.

For protocols where such efforts are underway, Proteus can take

advantage of the constructed models and properties. Another ap-

proach currently gaining traction is using natural language process-

ing (NLP) techniques and large language models to automatically

extract protocol state machines from the standard specification

text [? ?]. To evaluate the feasibility of applying such approaches,

we used one such tool, Hermes [?], to automatically extract the

protocol state machine of LTE from the standard specification. After

comparing the extracted state machine with the hand-constructed

one we use for our evaluation, we observe that the extracted state

machine is missing a transition. Conceptually, Proteus can oper-

ate with a state machine that is not entirely accurate at the cost of

some spurious test cases. As a thought exercise, we decided to use

Proteus with the HERMES-extracted state machine to test using

Proteus with the same security properties and experimental setup.

We ran Proteus against Pixel 7 for 24 hours and identified all 3 de-

tected issues identified by Proteus using an entirely correct PSM.

Despite the missing transition in the automatically generated state

machine, we observed that Proteus was able to identify all the

vulnerabilities that it uncovered when using the hand-constructed

state machine. This corroborates our hypothesis of Proteus’s loose
reliance on the accuracy of the state machine.

Limitations of open-source adapter implementations impose

constraints on testing. Proteus’s capabilities are constrained by

the message types and predicates that we can implement in the

adapter (§7) with open-source protocol stacks, which may support

only a limited set of message types and predicates. Moreover, as a

black-box testing method, Proteus can only observe the output

messages of the IUT. Therefore, we only include transitions in

our guiding PSM, for which the implementation should provide

observable responses according to the specifications.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Syed Md Mukit Rashid et al.

13 RELATEDWORKS

Protocol testing. Prior works on testing protocol implementations

include mutation-based fuzzing approaches [? ? ?]. However, they

require significant time to reach diverse code paths and identify

vulnerabilities. DY Fuzzing [?] mutates network packets consid-

ering a Dolev-Yao adversary in the communication channel and

combines domain knowledge for effective protocol testing. How-

ever, since the mutation scheme of these works does not consider

the security property being tested or the current protocol state,

they are inefficient in finding vulnerabilities compared to Proteus.
Fiterau-Brostean et al. [?] developed a method to first learn an

automaton from protocol implementations and then compare it

against a catalog of manually obtained bug patterns, represented

as deterministic finite automata (DFA) to identify vulnerabilities.

However, this approach requires learning the state machine from

the implementation, which is costly (§8). It is also limited to identi-

fying only known vulnerabilities. The new bugs found in previously

untested targets are mostly instances of known bugs found in other

devices earlier. Further, another direction of work employs differ-

ential testing to find exploitable and interoperability issues [? ?].

Because of fixed sets of packets, they cannot explore vulnerabilities

that require diverse packet fields and corresponding values.

Security testing of cellular protocols. Previous studies inves-

tigating the security of LTE implementations have typically fo-

cused on either OTA testing [? ? ? ? ?] or the analysis of baseband

firmware [? ? ? ? ?]. Park et al. [?] have developed a negative

testing framework along with a set of extensive test cases to detect

vulnerabilities in UE devices. However, these test cases are manu-

ally designed and statically generated instead of being generated

dynamically depending on the implementations. Kim et al. [?] intro-

duce a semi-automated approach for fuzzing the LTE control plane,

which relies on some basic security properties. Researchers have

also used NLP to generate test cases from cellular specifications [?

?].

Security testing of BLE protocols. Frankenstein [?] utilizes ad-

vanced firmware emulation techniques to fuzz firmware dumps,

enabling the direct application of fuzzed input to a virtual modem.

FirmXRay [?] proposes static binary analysis tools to find the secu-

rity issues caused without running the firmware. On the other hand,

ToothPicker [?] focuses on one platform, providing host fuzzing

techniques for this platform. However, these works do not perform

stateful fuzzing. BLESA [?] utilizes ProVerif [?] to perform formal

verification of BLE protocols. InternalBlue [?] performs reverse

engineering on multiple Bluetooth chipsets to test and find vulnera-

bilities. BLEScope [?] identifies misconfigured devices by analyzing

the companion mobile apps. SweynTooth [?] offers a systematic

testing framework to fuzz BLE implementations. However, none of

these works consider stateful and property-focused testing. BLED-

iff [?] develops an automated black-box protocol noncompliance

testing framework that can uncover noncompliant behaviors in

BLE implementations. However, their approach cannot control the

number of test cases generated and be carried out within a time

budget 𝑡 .

14 CONCLUSION AND FUTUREWORK

Wedesign Proteus, a black box, protocol statemachine and property-

guided, and budget-aware automated testing approach for discov-

ering logical vulnerabilities in wireless protocol implementations.

Proteus leverages guidance from a PSM and also security proper-

ties to efficiently generate traces that can detect more vulnerabilities

using much less amount of OTA queries than existing works. In the

future, we will use Proteus to analyze other wireless protocols.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers and the shepherd for their feed-

back and suggestions. We also thank the vendors for cooperating

with us during the responsible disclosure. This work has been sup-

ported by the NSF under grants 2145631, 2215017, and 2226447, the

Defense Advanced Research Projects Agency (DARPA) under con-

tract number D22AP00148, State University of New York’s Empire

Innovation Program, and the NSF and Office of the Under Secre-

tary of Defense– Research and Engineering, ITE 2326898, as part

of the NSF Convergence Accelerator Track G: Securely Operating

Through 5G Infrastructure Program.

State Machine Mutation-based Testing Framework for Wireless Communication Protocols CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

A BRIEF DESCRIPTION OF 4G LTE AND BLE

PROTOCOLS

UE MMEeNB

RRC Connection Setup

attach request

authentication request

security mode command

security mode complete

RRC SM Complete

RRC SM Command

attach accept

attach complete

GUTI reallocation command

GUTI reallocation complete

detach request

detach accept

N
A

S Security
C

ontrol Procedure
A

S
Security

A
ttach Procedure

authentication response

Figure 9: Regular flow of NAS and RRC messages in LTE

protocol.

A.1 4G Long Term Evolution (LTE) Protocol

The 4G LTE is currently the most widely used cellular technology

globally. The user devices on LTE are called User Equipment (UE),

which includes identity information and cryptographic keys. On

the network side, eNodeB acts as the base station that provides

the radio connection. Moreover, the core network consists of sev-

eral important components that provide different functionalities

in LTE. Among them, the Mobility Management Entity (MME) is

responsible for UE’s attaching to the network.

LTE protocol stack, at the lowest level, has the Physical Layer.

Sequentially, the next layers are the Medium Access Layer (MAC),

Radio Link Control (RLC), Radio Resource Control (RRC), Packet

Data Convergence Control (PDCP), and Non Access Stratum (NAS)

layer, respectively. Among these layers, RRC and NAS are responsi-

ble for establishing radio connections, UE’s attaching to the network

and updating the location of the UE within the network. In this

work, we primarily focus on the attach procedure.

The attach procedure starts with UE sending an attach_reqest

message to the network. Then, after proper authentication via the

exchange of authentication_reqest and authentication_response mes-

sages, the MME establishes the NAS security mode control proce-

dure via the exchange of security_mode_command and security_mode_complete

messages and finally completes the attachment via the exchange

of attach_accept and attach_complete messages. In the RRC layer, AS

security context messages are established via the exchange of rrc_

security_ mode_command and rrc_security_ mode_ complete messages be-

tween the UE and the base station (eNB). Additionally, the MME can

identify information from the UE through identity_reqest message,

to which the UE should reply as per the specification, based on

the state and identity type requested. After attachment, the MME

also periodically changes the temporary identifier of the UE via the

exchange of guti_reallocation_command and guti_reallocation_complete

messages. A sequence diagram of the messages is given in Figure 9.

scan request/response

connection request

optional packets

pair request/response

public key exchange

pair random send/receive

DHkey check

encryption request/response

pair random send/receive
pair confirm

pause encryption request/response

pair confirm

start encryption request

start encryption response

Pairing Procedure
LL

Encryption

Secure
C

onnection
Legacy
Pairing

Central Peripheral

Encryption
Pause

Figure 10: Regular flow of BLE protocol.

A.2 Bluetooth Low Energy (BLE) Protocol

For short-range communication, Bluetooth is one of the most popu-

lar technologies, being widely adopted in numerous devices, includ-

ing smartphones, IoT devices, and peripherals. Among different

Bluetooth technologies, BLE provides an energy-efficient communi-

cation protocol appropriate for low-cost, energy-restricted devices.

The BLE protocol stack has two distinct subsystems– controller
and host. The controller subsystem includes the physical layer, the

link layer (LL), and the host-controller interface. On the other hand,

the host includes Logical Link Control and Adaptation Layer Proto-

col (L2CAP), Security Manager Protocol (SMP), Attribute Protocol

(ATT), Generic Attribute Protocol (GATT), and Generic Access

Protocol (GAP).

A BLE pairing and bonding process (As shown in Figure 10) starts

by establishing the Link Layer connection via the scan_req, scan_resp

and connection_ reqest message between the central and peripheral

devices and exchanging several optional packets (e.g., version_ re-

qest, length_reqest, MTU_reqest message) to determine different

connection parameters. After that, the pairing procedure takes place

with pairing_reqest and pairing_response messages. Depending on

the type of pairing— legacy pairing or secure connections— differ-

ent sets of messages are exchanged. For legacy pairing, sm_confirm

and sm_random messages are exchanged. For secure connections,

in addition to these messages, public_key_exchange and dh_key_check

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Syed Md Mukit Rashid et al.

Table 12: List of tested LTE devices and identified vulnerabil-

ities.
∗
: The device is known to have the vulnerability.

Device Name SoC Model Baseband Version Identified Vulnerabilities

Huawei P40 Pro Kirin 990 5G 21C93B373S000C000 L-E9

Hisense F50+ Tiger T7510 5G_MODEM_20C_W21.12.3_P5 L-E3, L-E4

Galaxy S21 Exynos 2100 G991BXXU5CVF3 L-E1, L-E2, L-E7

Pixel 6 Google Tensor g5123b-116954-230524-B-10194842 L-E1, L-E2, L-E7

Pixel 7 Google Tensor G2 g5300q-230626-230818-B-10679446 L-E2, L-E5, L-E7

Xperia 10 IV Snapdragon 695 strait.gen-01223-04 L-E6, L-E8, L-O1

HTC One E9+ Helio X10 1.1506V24P22T34.2103.0805_AD5W L-E1, L-E2

Nexus 6P Snapdragon 810 angler-03.88 L-E3
∗
, L-E6, L-E8, L-O1

Galaxy A71 Snapdragon 730 A715WVLU4DVI3 L-E6, L-E8, L-O1

Pixel 3a Snapdragon 670 g670-00042-200421-B-6414611 L-E3
∗
, L-E6

∗
, L-E8, L-O1

Huawei P8 Lite Kirin 620 22.300.09.00.00 L-E3, L-E4, L-E7

Table 13: List of tested BLE devices and identified vulnerabil-

ities.
∗
: The device is known to have the vulnerability.

Device Name Vendor BLE Version Identified Vulnerabilities

DT100112 Microchip 4.2 B-E1
∗
, B-E3

∗
, B-E4, B-E5

∗
, B-E7, B-E8

∗
, B-E9, B-O1, B-O3

ESP32-C3 Espressif 5.0 B-E3
∗
, B-E7, B-E10, B-E11, B-I1, B-O3

Hisense F50+ Hisense 4.2 B-E3, B-E4, B-E10, B-E11, B-O3

Galaxy S10 Samsung 5.0 B-E3, B-E4, B-E7, B-I1, B-O1, B-O3

Galaxy S6 Samsung 4.1 B-E1
∗
, B-E3

∗
, B-E4, B-E7, B-E11, B-O1, B-O3

Galaxy A22 Samsung 5.0 B-E2, B-E3, B-E4, B-E6, B-E7, B-E10, B-I1, B-O1, B-O2, B-O3

Pixel 6 Google 5.2 B-E4, B-E7, B-E11, B-I1, B-O1, B-O3

Pixel 7 Google 5.2 B-E3, B-E4, B-E7, B-E11, B-I1, B-O1, B-O3

Xperia 10 IV Sony 5.1 B-E3, B-E7, B-O1, B-O3

OPPO Reno7 Pro 5G OPPO 5.2 B-E1, B-E2, B-E3, B-E4, B-E6, B-E7, B-E10, B-E11, B-I1, B-O1, B-O2,

B-O3

Motorola Edge+ (2022) Motorola 5.2 B-E3, B-E7, B-I1, B-O1, B-O3

Laptop Lenovo

BTstack 1.5.6.3

B-E7, B-E9, B-I1, B-O3

with BLE 5.2

Table 14: Glossary of symbols used.

Symbol Meaning

M Guiding protocol state machine (PSM)

Q The set of states in a PSM

Σ The alphabet of input symbols

Λ The alphabet of output symbols

𝑞

A single protocol state.𝑞𝑖𝑛𝑖𝑡 denotes the initial protocol state,𝑞𝑐 denotes

the current protocol state,𝑞𝑛 denotes the destination/next protocol state

of a transition

R The set of transitions in a PSM

𝛼 Input symbol of a transition in a PSM

𝛾 Output symbol of a transition in a PSM

𝜋

A single trace/trace skeleton. 𝜋𝑎 denotes an abstract trace/test skeleton,

whereas 𝜋𝑐 denotes an instantiated trace. 𝜋𝑖 denotes the 𝑖
𝑡ℎ

element or

observation of a trace.

𝜙 A single security property

Φ A set of security properties

𝜇
Mutation budget (maximum number of perturbations

to be applied in a good protocol flow)

𝜆
Length budget (maximum size of a test case or length of a message

sequence)

𝛽 Testing budget. Is a combination of (𝜇, 𝜆)

𝑙 𝑗 𝑗𝑡ℎ observation in the testing skeleton

I𝑃 Target protocol implementation under test

messages are exchanged. Finally, the Link Layer encryption is estab-

lished via the exchange of encryption_reqest and encryption_response

messages, and the devices’ pairing and bonding are completed. The

encryption can also be paused between two paired devices via pause_

encryption_reqest and pause_ encryption_response messages.

B ALGORITHM FOR PROTEUS

Algorithm 1 Approach of Proteus
Input:

I𝑃 : Implementation under test

M: Guiding PSM

𝑡 : Max number of traces that can be tested within testing budget

Φ: Set of desired properties to test

𝜇: Mutation Budget

𝜆: Length Budget

Output: A list of traces followed by I𝑃 violating any security property 𝜙 ∈ Φ
1: procedure TestProtocol

2: Ψ = ∅ ⊲ Violating Skeletons For All Properties

3: for each 𝜙 ∈ Φ do

4: Ψ = Ψ ∪ GetSkeletons(𝜙) ⊲ RegExGenerator
5: end for

6: T𝑎𝑙𝑙 = ∅ ⊲ Set of all traces to test

7: for each 𝜎𝑣 ∈ Ψ do

8: T𝑎𝑙𝑙 = T𝑎𝑙𝑙∪ GetTraceSet(M, 𝜎𝑣 , 𝑞𝑖𝑛𝑖𝑡 , 𝜇, 𝜆) ⊲ TraceBuilder
9: end for

10: numTraceTested = 0

11: while numTraceTested ≤ t do ⊲ TraceDispatcher
12: 𝛾 = SelectTraceToTest(T𝑎𝑙𝑙) ⊲ Scheduler

13: R = ExecuteTrace(M, I𝑃 , 𝛾) ⊲ Execute Trace and Observe Response

14: if 𝛾 violates any security property 𝜙 then

15: Report 𝛾 violates security property 𝜙

16: end if

17: StoreFeedback(𝛾 , R)

18: numTraceTested = numTraceTested + 1

19: end while

20: end procedure

C PROTEUS’S EFFECTIVENESS AND

EFFICIENCYWITH INCORRECT PSM

We also test what would happen in case of incorrect behavior

in the guiding PSM due to human errors during its construction.

For this experiment, we intentionally altered our guiding PSM

for LTE, and deleted the transition for security_mode_command/ secu-

rity_mode_complete. We run with the same property discussed in the

previous section (§11). We find that with mutation budget 1 and

length budget 8 there is no trace generated, since now from the

guiding PSM at least 2 mutations are required to satisfy 𝜎𝑣 , one to

trigger the replayed guti_reallocation_command message and one to

place the security_mode_command/ security_mode_complete observation.

Consequently, if we run the same example with mutation budget

3 and length budget 9, we get 1920 test traces which also contain

a trace that generates the counterexample that is accepted by a

practical protocol implementation with the vulnerability. Without

the error, only 121 traces are generated with mutation budget 2 and

length budget 8 that contains the vulnerability. Thus we conclude

that even with the introduction of the error Proteus can detect

the vulnerability, but the error affects its efficiency and we have

to run TraceBuilder with a higher mutation and length budget to

detect it.

	Abstract
	1 Introduction
	2 Preliminaries and Notations
	3 Motivation of PROTEUS
	3.1 Running Example
	3.2 Benefit of Having PSM and Properties

	4 Design Overview and Challenges
	4.1 Proteus Overview
	4.2 Challenges and Insights

	5 RegExGenerator: Constructing Test Skeletons From Security Properties
	6 TraceBuilder: Generating Test Cases from Test Skeletons and Guiding PSM
	6.1 Mutating a PSM
	6.2 Instantiated Trace Generation

	7 TraceDispatcher: Test Execution and Flaw Detection
	8 Experiments
	8.1 Experiment Setup For Testing

	9 Identified Issues
	9.1 Identified Issues in LTE
	9.2 Identified Issues in BLE

	10 Comparison with Existing Works
	10.1 Qualitative Comparison
	10.2 Total Number of Vulnerability Detection
	10.3 Vulnerability Count Growth
	10.4 Coverage Growth

	11 Performance of Proteus
	12 Discussions
	13 Related Works
	14 Conclusion and Future Work
	A Brief Description of 4G LTE and BLE Protocols
	A.1 4G Long Term Evolution (LTE) Protocol
	A.2 Bluetooth Low Energy (BLE) Protocol

	B Algorithm For Proteus
	C Proteus's Effectiveness and Efficiency with Incorrect PSM

